Characteristically Nilpotent Lie Algebras and Symplectic Structures

نویسنده

  • DIETRICH BURDE
چکیده

We study symplectic structures on characteristically nilpotent Lie algebras (CNLAs) by computing the cohomology space H(g, k) for certain Lie algebras g. Among these Lie algebras are filiform CNLAs of dimension n ≤ 14. It turns out that there are many examples of CNLAs which admit a symplectic structure. A generalization of a sympletic structure is an affine structure on a Lie algebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The structure of a pair of nilpotent Lie algebras

Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...

متن کامل

Affine structures on nilpotent contact Lie algebras

Any Lie algebra equipped with a symplectic form can be equipped with an affine structure. On the other hand there exist (2p + 1)-dimensional Lie algebras with contact form and no affine structure. But each nilpotent contact Lie algebra is a one-dimensional central extension of a symplectic algebra. The aim of this work is to study how we can extend, under certain conditions, the symplectic stuc...

متن کامل

Some properties of nilpotent Lie algebras

In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.

متن کامل

Symplectic structures on quadratic Lie algebras

We study quadratic Lie algebras over a field K of null characteristic which admit, at the same time, a symplectic structure. We see that if K is algebraically closed every such Lie algebra may be constructed as the T∗-extension of a nilpotent algebra admitting an invertible derivation and also as the double extension of another quadratic symplectic Lie algebra by the one-dimensional Lie algebra...

متن کامل

Degenerations of nilpotent Lie algebras

In this paper we study degenerations of nilpotent Lie algebras. If λ, μ are two points in the variety of nilpotent Lie algebras, then λ is said to degenerate to μ , λ→deg μ , if μ lies in the Zariski closure of the orbit of λ . It is known that all degenerations of nilpotent Lie algebras of dimension n < 7 can be realized via a one-parameter subgroup. We construct degenerations between characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008